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1. Abstract: 

This project attempts to answer part of the question: Can music be reconstructed into sheet music from a 
recording through signal processing? This is a multifaceted problem that entails instrument identification, 
instrument isolation, pitch detection, dynamics etc. This project will explore a subset of this area, i.e., the 
fascinating world of beat detection, more commonly called onset detection.  
 

While there are many methods that can isolate onsets, this project focuses only frequency domain 

detection functions. There is, however, some discussion of time domain methods to give a taste of insight to 

frequency domain methods. The discussion is concluded with the results of several onset detection algorithms to 

give an empirical comparison between algorithms. 
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2. Introduction to Onset Detection: 

“To beat or not to beat” that is the fundamental question when trying to transcribe music. Many musicians study 

how to transcribe music in college; it requires a lot of time and mental energy to complete the task.  Automation 

can tremendously speed up transcription process, especially for untrained musicians; beat/rhythm detection, also 

known as onset detection, is the most important, element in any music transcription process. 

   The onset is the start of a signal event. In the case of music, the event is a change in pitch or the start of a 

note. Figure 1 shows a sample of a highly emphasized onset, such as the beating of a drum.  The onset is very 

moment where the start of an abrupt change in amplitude in a signal occurs.  The attack is the very moment after 

the onset; it is the time after the onset but before the signal reaches its peak. The decay is the exponentially 

decreasing amplitude of the signal after it has reached its peak.  Imagine playing a steady beat on a large drum, the 

moment that you strike it is when you anticipate your ears hear the sound, the onset, not when you’ve already 

pressed the drum all the way down, i.e., the peak, but rather the moment before the attack.  

 

Figure 1  Music sample of an onset 

The onset detection algorithms examined in this paper are those primarily proposed by [1]. They examine 

sound from both a signal perspective and psychoacoustic understanding of how humans interpret sound. The 

algorithms examine onset features based on energy, spectral content, phase deviation and high frequency content.    

3. Detection Functions 

The goal of a detection function is to indicate when a specific feature is present in a signal. For example, suppose 
we would like to know when a light switch is flipped on, if the signal is passed through an appropriate detection 
function, a peak will occur when the light switch is turned on. There are many detection functions that can set off 
the very same event. To choose the features to look at, we need to take a look at the signal and develop and 
understand of what happens to the signal during our desired event.  
 

Let’s take a closer look at a music signal. The signal in Figure 1 is a sample of music during a strong onset. 

The signal could come from a highly percussive instrument, such as marimba, glockenspiel, timpani etc. The main 

thing to notice is that the signal spikes quickly from being relatively flat and then the exponentially decays. The 

time-frequency properties of this signal can be exploited into several detection functions.  

3.1.1. Time Domain Methods 

For a highly percussive signal, such as in Figure 1, the outline of the signal, i.e., the reduced signal on the 

right, can be used directly as an onset function. [1] suggests rectifying and smoothing the signal by taking the 6 
absolute value of the signal and using a moving average filter to generate a detection function. This can result in a 
noisy signal and smoothing can widen the peak of the signal reducing the accuracy of the time localization. 
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Another possible onset function is chopping the music signal into small time and calculating the average energy of 
each section, where N is the window size and x[n] is our signal of interest.                                                                                                       
 
  Another possible onset function is chopping the music signal into small time and calculating the average 
energy of each section, where N  is the window size and x[n] is our signal of interest:  

          
 

 
      

 
 
  

 
 

 

The averaging of the energy leads to a sharp and highly peaked function that reduces the time resolution of the 

signal to reduce the amount of spurious onsets. This detection function can be further improved by measuring the 

change in energy by taking the derivative. This idea gets explored by [2], by using a Remez FIR filter to implement 

differentiation. Time domain functions are really only useful for highly percussive signals, changing from one pitch 

to another while keeping the energy constant would result in a smooth signal transition and the onset would go 

unnoticed using time domain methods..   

3.2. Frequency Domain Methods 

These time domain methods, according to [1], result in very noisy detection functions. Time domain 

signals are highly variable and their features are difficult to use as an accurate detection function. By changing 

domains, that is, switching from the time domain to the frequency domain, we can exploit features of the signal to 

obtain better detection functions than time domain methods.   

Consider the Short-Time Fourier Transform (STFT) [1]: 

                     
    

 

 
 

  

    
 
 

 

Where n is the time location, h is the hop size, i.e. , the number of points to jump ahead for each STFT window, 

w(m) is a windowing function, such as Hamming, Kaiser or Hann, which reduces spectral smudging and the k 

frequency bin. When using the STFT, we do not use a sliding window, instead we hop ahead to create successive 

STFTS by doing so the ability to localize an onset in time becomes difficult. If we use windows smaller enough, the 

accuracy of the detection function’s time localization is negligible and we can define the center of each window as 

the time instance of the STFT. Regardless of this shortcoming, the STFT is still a valid and capable tool for onset 

detection. 

3.2.1. Magnitude Based Methods  

From signal processing theory, as a signal becomes large in amplitude and short in time, its frequency 

spectrum widens into higher frequency spectrum. Figure 1 shows that that an onset in a piece of music can be 

treated as a large narrow peak, a Dirac delta function. This means that the frequency content in the higher end of 

the spectrum increases during an onset. The high frequencies can be emphasized by weighting them by and 

measuring the signal energy by:  
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If     is  ,i.e., we are linearly weighting each frequency; this is equivalent to taking an instantaneous derivative of 

the signal. This is much more accurate because there is no need for an approximation for a derivative via Remez 

FIR filter. 

While the HFC detects when there is an increase in high frequency content, we can also use the signal 

processing theory assumption to look at the change in spectral content. This is useful for detecting changes in pitch 

such as a singer transitioning from one note to another. [1] defines the spectral difference as: 

      
 

 
                          

 
 

  

  
 
 

 

Where H(x) is zero for negative arguments and equal to the result for positive arguments. This is calculated by 

                this is to emphasize an increase in spectral content as opposed to a decrease.  

3.2.2. Phase Method 

An STFT assumes that the signal is a slow changing sum of sinusoids. When an onset occurs there is a 

discontinuity of amplitude which causes an abrupt change in the phase of these slow varying sinusoids. [1] 

describes that slow changing sinusoids have a continuous linear phase between frames such that            

where    is the kth frequency of interest and t is time. This is extended by [1] to: 

                                  

      is the phase at the n time of the k frequency bin. The assumption of linear phase can be taken a step farther 

by looking at the phase deviation, which is the difference in the difference of phase, i.e., the second derivative. 

This should be zero between successive windows; therefore, the phase deviation can be used as a detection 

function as: 

                                

Putting all of this together the absolute average phase deviation is: 

   
 

 
          

 
 
  

  
 
 

 

[The absolute phase deviation is generally a poor detection function. [1] indicates large distortions occur because 

frequencies with little or no energy have equal phase importance. This method is useful for soft onsets. For 

example, a singer changing notes at a constant volume on an open vowel. The change from one to the other will 

be undetectable when measuring signal energy; however, it is much more noticeable in the phase deviation of the 

signal. 
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3.2.3. Combined Complex Domain Method 

Energy based methods are useful for strong onsets, such as percussive instruments, the phase method is 

good for soft onsets. Both methods extend into opposite ends of detection problems. [3] proposes that a 

combined energy and phase method can be combined to create a more successful detection function. [3] uses a 

Euclidean distance measurement between successive  frames: 

                                                         
 
   

As with the other detection problems we are interested in the average distance between all frequency bins which 

is a complex domain detection function: 

     
 

 
      

 

   

 

4. Implementation 

The almost all of the algorithms previously described rely on the same preprocessing steps with the 

exception of the detection function. First, the music signal is divided into overlapping sections. A windowing 

function, such as Hamming or Hann windows, is applied to reduce the frequency “smudging” caused by the native 

square, Dirichlet, window. A Discrete Fourier Transform (DFT) is taken, via FFT algorithm, with zeros padded to the 

signal to increase the clarity, but not the resolution, of the curve. The detection function is applied to the STFT. 

Finally, the peaks are picked off of the detection function and localized to a time.  

4.1. Short-Time Fourier Transform 

 The main component to each and every detection function is the Short-Time Fourier Transform. A STFT 

function was not found until very late into the project, so the FFT algorithm was used in conjunction with 

additional coding to create an STFT function. The process is as follows: A wav file is loaded into Matlab. If it has 

multiple channels they are summed into a single channel. The imported sound is then normalized by dividing by 

the largest absolute value. Then the music signal is cut into overlapping sections. A windowing function is applied; 

in this case, the algorithm uses a hamming window. Apply the FFT algorithm with some zero padding to the 

windowed, overlapping signal. Then move the next frame of music and repeat this procedure until all parts of the 

signal have been processed. While the general procedure of the STFT is straight forward, the STFT does have 

tunable two tunable parameters that need to be appropriately chosen: the percentage of overlap between 

successive frames and the time length of each window.  

The windowing function is used to reduce smudging of adjacent frequency components. This is done by 

multiplying the time domain signal by the windowing function. Using a windowing function comes at a cost. The 

windowing function will decimate the amplitude of the signal, throwing away information. To solve this, each STFT 

window has some percentage of overlap between its current window and its previous windows so that if an onset 

is located in a weak part of one window, it is caught by the next window; unless otherwise stated, an overlap of 

50% is used in all cases. 
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Figure 2 Hamming Window 

The window time length determines the minimum onset length that we can detect, that is, the shortest 

note we can detect whether, it is a quarter note, half note or sixteenth note. The larger a window the smoother 

our detection functions becomes and the easier it is to pick the peaks off it; however, if the window gets too large, 

onsets get blurred together, as can be seen in Figure 3. 

 

Figure 3 Euclidean Distance detection function for various window times. (a) Window Time= 0.001s (b) Window Time = 0.08s 
(c) Window Time = 0.3s 

On the other hand, If the window is too short the processing misses areas of significant energy. On top of that, the 
detection function, as seen in Figure 3, becomes noisy and makes accurate peak picking difficult.  

 

The best selection of a window time is to think of the window time in terms of the actual music. Let’s 

assume that a piece of music has a fast tempo of 180 quarternote beats per minute (Bpm) which translates to 3 

beats per second. lets say that the smallest note value time, in this unplayably fast tempo, is an eighthnote; this 

means that there are 12 notes a second being played, a quarternote is four eigth notes. The time period required 

for each of these notes is 83.3 milliseconds per note. If the sixthteenth note is the smallest note of consideration, 

at 180 Bpm, each sixteenth note takes about 20.3m.  
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An alternative consideration is a psychoacoustic aproach to hearing, if the rate of a beat pulsates on the 

order of human hearing the impulse will be more of a pitched frequency. Since the lowe end of the human hearing 

is spectrum is 20 Hz  a 50ms  can be seen as the mimium time allowed for the window length.  When testing the 

algorithms times were selected between 30ms and 50s this allowed the signal to have more “rests” inbetween 

onsets as giving more points to work with for each onset for the peak picking algorithm.  

4.2. Detection Function 

After getting the series of spectrographs, from the STFT algorithm, the detection function is applied to 

generate a series of peaks, such as the one seen in figure 3. Each one is easily implemented in Matlab as described 

above.  

There is some care that needs to be taken with the phase deviation and HFC functions. The phase calculations 

needs to keep the phase continuous    ; the arctangent function which is limited to  
 

 
 should not be used 

without additional logic to place the angle in the correct quadrant. In addition, the HFC function requires the 

amount of zero padding and sampling frequency to multiply the frequency bins by the appropriate frequencies   

4.3. Peak Picking 

From calculus, the initial peaks are first selected by determining the zero crossing point in differentiation, for 

the numerical data this was done by detecting elements that were larger than the element before and after it. If 

the onset signal were ideal this would be all the processing that would be needed. Looking at the detection 

function in Figure 3, the smaller the window size the more spurious, or false, peaks would be noted from the 

detection function. Noisy elements of the music, such as a high-hat resonating for several frames, can interfere 

with accurate detection an additional step is required to eliminate these spurious peaks.  

Every paper thus far, namely [1-4,7], recommend using an adaptive threshold filter around the initially 

selected peaks, where the center point of the median filter is the possible peak noted by the differentiation stage 

of the peak picking algorithm. [1] suggests: 

                                         
 

 
   

 

 
   

Where   is the center of the window, i.e., the potential peak time found from differentiation,   is the number of 

points in the median filter, α is an absolute minimum threshold and β is the scaling factor of the median filter.  

Often     and α is not used. α, if used at all, is usually swept through to generate curves to compare various 

detection functions.   

After finding potential peaks, if these potential peaks are above the adaptive median threshold they are 

still potential onsets. Looking at Figure 3a, the first peak has additional components that increase and decreases 

near a main peak; even though it may pass the median filter threshold it is still a spurious onset. To deal with 

problem we introduce a refractory period. Once an onset is detected another one cannot detected until the 

refractory time period has passed. From a psycho-acoustic approach, [5] says that the human ear can only perceive 

pitch when a signal is at least 15-20ms long, this is on the order of the window length so it must be larger to be of 

substantial use. [1] Recommends using 100ms refractory period but because it can cause the loss of several onsets 

in such a large period of time; 50ms was selected as the refractory period.  

The short coming of including a refractory period is that it gives earlier onsets preferential treatment in 
that they are selected first. A much better way to implement the refractory period is to compare all peaks that fall 
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within the 50-100ms refractory period and select the peak with the largest value from the detection function; this 
was not implemented for simplicity, though would be suggested for future iterations of this project 
 

5. Results 

The algorithms were tested against a database of 3102 hand labeled onset times and corresponding audio 

files. They were provided by Music and Audio Research Laboratory (MARL) at NYU and Prosemus project at 

Universitat Pompeu Fabra. The databases consist of a mixed set of music files ranging from commercial to open 

source and from classical to pop music. The quantitative measurement of performance is to use a Receiver 

Operating Characteristic curve (ROC). The Y-axis represents the percentage of true positive, i.e., the total number 

of correctly discovered onsets versus the total number of onsets, and they X-axis represents the percentage of 

false positives, i.e., the total number of falsely labeled onsets versus the total number of detected onsets. The 

more accurate an algorithm is the more correctly determined onsets versus false positives, i.e., the plot should 

appear up and to the left. For generating each of the false positive versus true positives plots all variables but one 

was left constant. To illustrate the difference in performance between functions, while keeping all other 

parameters constant, the absolute minimum threshold, from the median filter; the median filter length, and the 

window time were swept through.  

Figure 4, shows the result of sweeping through the window length and keeping all other parameters 

constant. The Spectral Difference function is the best performing under these conditions compared to all of the 

other functions. 

 

Figure 4 Sweeping through window time length (HFC = High Frequency Content, SD = Spectral Difference, ED = Euclidean 
Distance and PD = Phase Deviation) 

As the window length increases the number of false positives decreases, i.e., the plot traces leftward. As the 

window length gets smaller, the detection functions approaches an instantaneous value. As the window gets 

larger, the instantaneous values get averaged out and features begin to approach a smoother function with well 

defined peaks. The error tolerance of the peak picking algorithm increases with the window length. The peak 

detection function will mark an onset as being correct if the absolute difference between the detected onset and 

the actual onset time is within half the window time. If the window becomes too large, peaks in the detection 
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functions will become blurred together, seen in in Figure 3 , and the true positive detection rate will decrease, as 

seen in Figure 4. 

Figure 5 shows the effects of changing the median filter length. As the filter length increases the number 

of false positive decreases. Eventually the performance takes a small dip in performance because the window 

length becomes too large; the number of peaks within the window increases which raises the median filter height. 

The best performing during this sweep is the Euclidean Distance. For phase deviation, the change in filter length 

has no effect on its results; it’s also the worst performing function.   

 

Figure 5 sweeping through median filter length 

Figure 6 shows the most widely referenced sweep,  the minimum threshold term of the median filter; 

virtually all papers on onset detection use it as the benchmark of onset detection algorithms; see [1-4]. 

 

Figure 6 sweeping through constant median filter term 
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As seen in Figure 6, as the constant part of the filter is raised, the threshold for a peak to be marked as correct 

peak increases; therefore, the decrease in both true and false positives is to be expected. As the threshold is 

lowered, the number of true positives increases faster than the number of false positives. Eventually, there is no 

significant improvement in the performance and the number of spurious onsets slowly increases. While not shown 

on the previous plots, ROC curves have a line that goes from (0,0) to (1,1)  called coin-flip line which is present in 

Figure 6.  The coin-flip line represents the probability of guessing if an event is onset or not as If it were a coin flip. 

If a plot lies above this line the function performs better than flipping a coin and guessing if the event is an onset. If 

a function is below the coin-flip line, the function is better at assuming the opposite, the event is not an onset.  [1]  

6. Comments on Results: 

         Detection functions are highly variable and dependent on the tuning parameters associated with the 
peak detection function, that is, the median filter. With fine tuning, [1] has shown correct detection rates as high 
as 96.7% with no false positives using the MARL database and the HFC function. Even though according to Figure 6 
that the HFC function is worse than flipping a coin, the effectiveness of a specific function is limited to the type of 
music signal that is being analyzed. [1] recommends four classifications of onset types they are: Pitched non-
percussive, such as a flute, singer or clarinet; pitched percussive, such as a piano or glockenspiel; non-pitched 
percussive, such as tam-tam or congas; and complex mixed, such as an orchestra, jazz combo or rock band.  
 

[1] indicates that energy based methods, such as the High Frequency Content and the time domain 
energy, work best for any highly percussive onset. Energy methods are computationally quick and easy to 
calculate; the need to take a Discrete Fourier Transform DFT can be eliminated if the signal is passed through an 
FIR differentiation filter which can dramatically improve computational performance time. [2]  

 

[1] explains that complex music sets are best performed by the Spectrial Difference. The Prosemus onset 

database is nearly three times the size of the MARL database. The Prosemus library consists of more complexes 

pitched percussive and non-percussive which skews the results of the onset detection algorithm in favor the 

spectral difference; however, spectral difference is not without its advantages. It combines both the benefits of 

detecting a change in pitch as well as a change in energy. This is the best first estimate of any of the onset 

detection functions for general purpose beat detection. 

The results have indicated that absolute phase deviation is the worst performing of all the detection 

functions. Only by lowering the threshold will more true positives be detected. The phase deviation is a noisy 

feature because elements with no significant energy still have an equal effect on the average phase as frequencies 

with significant energy; the Euclidean distance function will outperform phase deviation in all instances because it 

takes energy into consideration on top of the phase. [1, 6] proposes that a statistical approach, such as using the 

kurtosis, that is, “peakedness”, of the phase distribution to, combined with the inner quartile range [6] of the 

distribution is more effective as a detection function than using the phase directly. Further research lead to [4] 

which suggests giving significance to each phase by weighting the phase by its corresponding frequency amplitude, 

i.e., Weighted Phase Deviation (WPD):  

                      

 
 
  

   
 
 

 

From this discussion, the effectiveness of an onset detection algorithm depends on the type of music that 

being analyized. Even the worst performing onset detection functions can have acceptable levels of performance if 
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the proper type of instrument is used. These algorithms can benefit from more a priori knowledge about the music 

whether through source separation or instrument identification preprocessing algorithms to choose an 

appropriate onset detection scheme.   

7. Conclusion: 

Time localization of the start of notes is possible. The detection methods discussed here are the tip of the 

iceberg of possible functions. Every year the MIR community produces more and varied detection functions based 

on wavelet transform theory, statistical analysis, detecting changes in fundamental frequency and more. Because 

of the nature of onset detection algorithms, it is a multidisciplinary field; anything that relies on the detection of 

the start of a signal relies on it, e.g., sonar, speech, EKGs, movement detectors— virtually the whole field of signal 

processing stands to gain from onset detection.    
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Appendix A 
A.1. Sample Code 
 

%This is an example how to use the included code 
% Define variables 
% take STFT 
%  Apply Detection Functions 
%  Pick Peaks 
%  Calculate Error 
 
clc; 
clear all; 
%% Define Variables 
%load music file 
[music Fs] = wavread('music_bello_1.wav'); %import 10 second sound file 
%load onsets depending on format 
load('onsets_bello_1.mat'); 
onsets = T; 
% Define STFT parameters 
%window Time 
wTime = .05; 
%2^ZP_exp additional zero padding 
ZP_exp = 1; 
%percentage of overlap (written as a number between 1 and 100) 
Percent_overlap = 50; 
%median filter Parameters 
%scaling parameter 
gamma = 1; 
%filter length 
filt_len = 5; 
%constant threshold 
C = 0; 
%peak picking refractory period 
refractory = .05; 
 
%% Detection Algorithm 
%take STFT 
[STFT_in times_in N_padding] = STFT_Music(music, Fs, wTime, Percent_overlap,ZP_exp); 
% Apply Detection Function 
%High frequency content 
[detection_function_HFC times_HFC] = HFC(STFT_in,times_in,Fs, N_padding); 
%Optional Normalization 
detection_function_HFC = (detection_function_HFC)/max(abs(detection_function_HFC)); 
%pick out peaks in detection function 
[peak_time_HFC] = pickpeaks(detection_function_HFC, times_HFC, filt_len, gamma, C, refractory); 
%Calculate Correct and false positive rate 
[correct_HFC false_pos_HFC] = peak_error(peak_time_HFC, onsets, wTime); 
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 A.2. STFT_Music  Function 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% STFT_music Function 
%  [STFT_out times N_padding] = STFT_Music(music, Fs, wTime,  Percent_overlap,ZP_exp) 
%   Computes the STFT for a music signal using a hamming window for each 
%   set of samples taken. 
%   Outputs: 
%   STFT_out is the complex output for the STFT in the range +/- Pi 
%   times corresponds to the times associated with the center of each 
%   window 
%   N_padding is the number of points of zero padding used  
%   Inputs: 
%   music is them music signal whose windows are to be taken 
%   Fs is the sampling rate of the windows 
%   wTime is the time range of the stft windows (number of points are 
%   rounded down) 
%   Percent_overlap is the percentage overlap between stft windows (written as an integar) 
%   ZP_exp is the power of 2 of zero padding desired for FFT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  [STFT_out times N_padding] = STFT_Music(music, Fs, wTime, Percent_overlap,ZP_exp) 
%number of STFT samples per STFT slice 
N_window = floor(wTime*Fs);  
%Number of overlaping points 
window_overlap =floor(N_window* (Percent_overlap/100));  
wTime = N_window/Fs; 
 
 
%% preprocessing manupulation 
%makes sure the music signal is only one channel 
music = sum(music,2);  
%normalize music signal 
music = music/max(abs(music));  
 
%% Size Checking 
%make sure there are an integer number of windows, if not zero pad until 
%they are  
 
[music_length mus_c] = size(music); 
number_of_windows = floor((music_length-N_window)/(N_window-window_overlap));%determins the number of 
times -1 that the overlaping window will fit the music length 
number_of_points_left =  music_length - (N_window + number_of_windows*(N_window-window_overlap)); 
%determin the remainder 
number_of_padding = (N_window-window_overlap)-number_of_points_left; %calculate the number of points 
neede to pad 
music = cat(1 ,music,zeros(number_of_padding,1)); %append the zeros to the end of the signal 
clear number_of_windows number_of_points_left number_of_padding 
 
number_of_windows = floor((music_length-N_window)/(N_window-window_overlap)) +1; 
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%% STFT 
%create hamming window 
windowing = hamming(N_window); 
%calculate the amount of desired zero padding 
N_padding = 2^(nextpow2(N_window)+ZP_exp);  
parfor k = 1:number_of_windows 
     %define the starting and ending indicies for each window of STFT 
   starting = (k-1)*(N_window -window_overlap) +1; 
    ending = starting+N_window-1; 
    %Define the Time of the window, i.e., the center of window 
    times(k) = (starting + ceil(N_window/2))/Fs; 
    %apply windowing function 
    frame_sample = music(starting:ending).*windowing;  
    %take FFT of sample and apply zero padding 
    F_trans = fft(frame_sample,N_padding); 
    %store FFT data for later 
    STFT_out(:,k) = F_trans;    
end 
end 
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A.3 Detection Functions 
  A.3.1 High Frequency Content  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%[detection_function times] = HFC(STFT_in, times_in, Fs, N_padding) 
%  Outputs: 
%  detection_function returns the values of the detection function applied 
%  at times. 
%  times are the times correspoinding to the detection_function features 
%       times is a modified form of times_in, multiple initial points are 
%       lost due to the initial conditions needed for the detection 
%       algorithm. 
%  Inputs: 
% STFT_in is the complexted domain STFT of the music signal 
%       Rows represent the kth frequency bin 
%       Columns represent the order in time the STFT was taken 
% times_in are the corresponding times of the center of the STFT window 
% Fs is the sampling frequency of the music 
% N_padding is the total number of points used for the STFT  
%       (actual points + Zero padding) = N_padding 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [detection_function times] = HFC(STFT_in, times_in, Fs, N_padding) 
[nr number_of_transforms] = size(STFT_in); 
%% Linearly Frequency Weighted Spectral Energy  
 
f_plot = -Fs/2:Fs/N_padding:Fs/2 - (Fs/N_padding); 
f_plot = f_plot'; 
parfor k= 1:number_of_transforms 
F_weight(:,k) = STFT_in(:,k).*f_plot; 
end  
%% Alternate Power Calculation Option 
% numeric integration vs summation 
% power_weighted = cumtrapz(f_plot,abs(F_weight).^2,1);  
% power_weighted = power_weighted(end,:); 
% energy = sum(abs(F_weight).^2,1); 
% detection_function = energy; 
%% Calculate Power by summing all amplitudes squared 
detection_function = sum(abs(F_weight).^2,1); 
times = times_in; 
end 
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  A.3.2. Spectral Difference 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% [detection_function times] = SD(STFT_in, times_in) 
%  Outputs: 
%  detection_function returns the values of the detection function applied 
%  at times. 
%  times are the times correspoinding to the detection_function features 
%       times is a modified form of times_in, multiple initial points are 
%       lost due to the initial conditions needed for the detection 
%       algorithm. 
% Inputs: 
% STFT_in is the complexted domain STFT of the music signal 
%       Rows represent the kth frequency bin 
%       Columns represent the order in time the STFT was taken 
% times_in are the corresponding times of the center of the STFT window 
%       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
 
function [detection_function times] = SD(STFT_in, times_in) 
[nr nc ] = size(STFT_in); 
 
%% Spectrial Difference 
F_transform = abs(STFT_in); 
times = times_in(2:end); 
parfor k = 1:nc-1 
    Spect_Diff_temp = F_transform(:,k+1) - F_transform(:,k); 
    Spect_Diff_temp = ((Spect_Diff_temp + abs(Spect_Diff_temp))/2).^2; 
    detection_function(k) = sum(Spect_Diff_temp,1); 
end 
end 
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  A.3.3. Phase Deviation 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
%[detection_function times] = Phase_deviation(STFT_in, times_in) 
% Outputs: 
%  detection_function returns the values of the detection function applied 
%  at times. 
%  times are the times correspoinding to the detection_function features 
%       times is a modified form of times_in, multiple initial points are 
%       lost due to the initial conditions needed for the detection 
%       algorithm. 
% Inputs: 
% STFT_in is the complexted domain STFT of the music signal 
%       Rows represent the kth frequency bin 
%       Columns represent the order in time the STFT was taken 
% times_in are the corresponding times of the center of the STFT window 
%       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
function [detection_function times] = Phase_Deviation(STFT_in, times_in) 
 
 
[nr nc] = size(STFT_in); 
F_phase = 0; 
parfor k = 1:nc 
    F_Phase(:,k) =  angle(STFT_in(:,k));%find phase of k FFT points for later use; 
    %store all data in sample by sample chunks 
end 
 
%% phase deviation  
%simple phase calculation by averaging the phase deviation across all 
% frequency bins 
for k = 3:nc 
    phi_k = F_Phase(:,k) - 2*F_Phase(:,k-1)+F_Phase(:,k-2); 
    detection_function(k-2) = sum(abs(phi_k))/nr; 
end 
times = times_in(3:end); 
end 
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  A.3.4. Euclidean Distance 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Euclidean Distance 
%[detection_function times] = Euclidean_Distance(STFT_in, times_in) 
%  Outputs: 
%  detection_function returns the values of the detection function applied 
%  at times. 
%  times are the times correspoinding to the detection_function features 
%       times is a modified form of times_in, multiple initial points are 
%       lost due to the initial conditions needed for the detection algorithm. 
% Inputs: 
% STFT_in is the complexted domain STFT of the music signal 
%       Rows represent the kth frequency bin 
%       Columns represent the order in time the STFT was taken 
% times_in are the corresponding times of the center of the STFT window 
%       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [detection_function times] = Euclidean_Distance(STFT_in, times_in)  
[nr nc] = size(STFT_in); 
parfor k = 3:nc 
    X_n = STFT_in(:,k) 
    X_n_1 = STFT_in(:,k-1) 
    X_n_2 = STFT_in(:,k-2) 
    delta_phi = angle(X_n)-2*angle(X_n_1)+angle(X_n_2); 
    euclid_dist = sqrt(abs(STFT_in(:,k)).^2 + abs(STFT_in(:,k-1)).^2  - 2*(abs(STFT_in(:,k)).*abs(STFT_in(:,k-
1)).*cos(delta_phi))) 
    [nr nc] = size(euclid_dist); 
    detection_function(k-2) = sum(euclid_dist)/nr; 
end 
times = times_in(3:end); 
end 
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A.4. Peak Picking Algorithm 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%[peak_time filt] = peakpick_music_median(detection_function, times, filt_len, gamma, C) 
% returns times of peak as well as median filter used 
% Outputs: 
% peak_time is the time corresponding to the peaks in Detection_function 
% filt is the filter threshold used for all points 
% 
% Inputs: 
% detection_function - function with peaks which you wish to detect 
% times - times corresponding to points of the detection function 
% filt_len - length of median filter 
% gamma - scaling factor for median filter 
% C - constant minimum threshold 
% refractory - minimum allowable time between peaks  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [peak_time filt] = pickpeaks(detection_function, times_in, filt_len, gamma, C, refractory) 
 
    [fn_len nc] = size(detection_function); 
    med_filt = medfilt1(detection_function,filt_len);%median filter function 
    filt = gamma*med_filt + C; % thresholding function 
   %see where the reduction function is above the threshold  
    thresholded = detection_function -filt; %subtract threshold 
 
    [~, loc] = findpeaks(detection_function); %find peaks 
    %find only the peak points where it is above the threshold filter 
    index = find(thresholded(loc)>=0); 
    index = loc(index);%use only these points for peak picking 
    %eliminate redundant onsets bey introducing a refractory period.  
    [nr nc] = size(index); 
    if (nc ~= 0) 
      %eliminate spurious peaks by introducing a refractory period 
      redundant_peak_times = times_in(index); 
       temp_times(1) = redundant_peak_times(1); 
       parfor k = 2: length(redundant_peak_times) 
       diff_time = redundant_peak_times(k) - redundant_peak_times(k-1); 
       if (diff_time < refractory) 
           temp_times(k) = -1; 
        else 
            temp_times(k) = redundant_peak_times(k); 
       end 
       end 
     peak_time = temp_times(find(temp_times>=0)); 
    else 
        peak_time = []; 
    end 
end 
 
 
 
 



24 
 

A.5. False Positive and True Positive Calculations 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% [correct false_pos num_correct_onset num_FP] = peak_error(onset_times, 
% actual_onsets,wTime) 
% Returns the percentage error and false positives between onset times 
% Outputs: 
% correct - percentage of correct onsets 
% false_pos - percentage of false positives detected 
% num_correct_onset - returns the number of correct onsets 
% num_FP - returns the number of false positve 
% Inputs: 
% onset_times - the time of an onset detected via various algorithms 
% actual_onsets - the prenotated onsets that are known before processing 
% wTime - the time used for each STFT window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [correct false_pos num_correct_onset num_FP] = peak_error(onset_times, actual_onsets,wTime) 
%initialize matricies 
correct_onset_time = []; 
false_positive= []; 
marked_onsets(1:length(actual_onsets)) = 0; 
 
%for each onset 
for k = 1:length(onset_times) 
    %find absolute distance between detected onset and onset list 
   time_dist = abs(actual_onsets - onset_times(k));  
    %find the closest onset 
   [close_time Index] =  min(time_dist);  
   %if the smallest distance is within one windowlength and hasnt been detected 
 
  if (((wTime/2) >= close_time) && (marked_onsets(Index) == 0))     
        %mark it as a correct onset 
        correct_onset_time(k) = onset_times(k);  
        %mark the onset as being used so double counting does not occur 
        marked_onsets(Index) = 1;   else 
        %otherwise it is a false positive 
        false_positive(k) = onset_times(k);  
    end 
end 
 
%due to indexing isolate all correct onsets 
correct_onset_time = correct_onset_time(find(correct_onset_time>0));  
%isolate all false positive 
false_positive = false_positive(find(false_positive>0)); 
 
%count the number of false positives 
num_FP = length(false_positive); 
% count the number of detected onsets 
num_onset = length(onset_times); 
%count the number od actual onsets 
num_act_onset = length(actual_onsets); 
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%count the number of correct onsets 
num_correct_onset = length(correct_onset_time); 
%calculate false postive error percentage 
false_pos = (num_FP)/num_onset; 
%calculate correct onset error percentage 
correct = num_correct_onset/num_act_onset; 
end 
 
 


