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 Abstract - The purpose of this paper is to give 

an in-depth description of vector quantization 

applied to speech signals. We will explore the 

famed LBG algorithm to numerically calculate 

appropriate reconstruction levels for the vector 

quantizer and show why vector quantization is 

an excellent form of compression for highly 

correlated signals like speech. 

 
 Introduction:  

 

While the size of hard drives are on a constant 

rise, they are never large enough to satiate our 

thirst for storage.  Our desire for high quality 

images, videos and sounds stored on our 

computers or transferred over the web is met 

with limited bandwidth and hard drive space. 

Ideally, we would like to be able to make the 

data stream as small as possible. Data 

compression attempts to solve this problem 

either through lossy or lossless compression.  

 

Lossless compression schemes attempt to take 

advantage of the statistical properties of a signal. 

Their goal is to make values that occur 

frequently be represented by as few a number of 

bits as possible and less frequent values take up 

more bits. The end result is the average number 

of bits of the data stream is smaller; therefore, 

we have effectively compressed the data.   

 

The downside of lossless compression schemes, 

such as Huffman and Arithmetic coding, is that 

they are relatively poor at compressing data. 

They have a compression ratio that ranges from 

1.16 to 2.03 [1] which varies largely depending 

on the type of signal being used, i.e., text, audio, 

video.  

 

Lossy compression, on the other hand, attempts 

to eliminate “redundancies” in the data by 

simply discarding them. A lossy compression 

scheme cannot perfectly reconstruct the original 

signal, but its goal is to create an approximation 

of the original signal. This is often based on 

human auditory or visual perception. Our eyes 

and ears are insensitive to noticing the errors 

that this approximation creates. 

 

The fundamental element in a lossy compression 

scheme is quantization. Analog signals span an 

infinite range space; therefore, all values cannot 

be represented by a finite number of bits. A 

quantizer takes this infinite range and fixes it 

into quantized intervals that are multiples of a 

step size. If we use a step size of 1 unit, values 

that fall in between these units will get fixed to 

the closest step level. For example, 0.4 will get 

quantized to 0 and 3.8 will get quantized to 4. 

The image below is a representation of a mid-

tread quantizer.  X-axis is the range of input 

values that get mapped to a fixed Y value. 

 
Figure 1 Mid-tread quantizer 

 



A simple way to compress the data is to reduce 

the number of bits used to quantize the input 

signal; this can be done two ways, each having 

similar effects. The first would be to simply 

increase the step size of the scalar quantizer so 

that it is less sensitive to variation in the signal. 

This reduces the number of levels needed to 

represent the data. The second way is to remove 

the Least Significant Bit (LSB) of each of the 

quantized samples; fewer bits are needed to 

represent the data. Chopping off an LSB is 

effectively increasing the step size of the data by 

a factor of two.  

 

Vector Quantization: 

 

 Consider the case where we are try to quantize 

two different, mutually exclusive, events such as 

the number of cars manufactured and the 

temperature of your car driving on a breezy day. 

Two, completely independent events and each 

would require their own vector quantizer. 

 
 The total number of levels required for this 

would be the number of levels to quantize the 

number of cars manufactured and one to 

quantize the temperature in your car.  So if we 

used 8 bits for each quantizer we would need 16 

bits to represent both pieces of data.  

 

Let’s consider the alternate case: What if we are 

trying to compress two highly dependent 

features, such as the temperature of a bar of 

metal and its length. There is an obvious 

relationship between the length of the bar and 

the temperature. As the temperature rises, the 

bar gets linearly longer, as can be seen in Figure 

2.  

 

If we assumed that the length and temperature of 

the metal are independent from one another and 

use two quantizers to represent each, we can see 

that we would be wasting a significant portion of 

the values that we can represent. An ideal 

quantizer would quantize only along the line that 

represents the temperature-length relationship.   

 

Vector quantizers take the temperature and 

length values and represent them as a single 

vector. By using fewer levels and bits represent 

the data we can effectively compress this two 

dimensional problem into one dimension.  

 
Figure 2 Temperature vs. Length of a metal bar 

 

 

VQ and Speech: 

 

 Sucessive speech samples are like the 

relationship between Temperature and Length, 

they are highly correlated. Figure 3 shows a 

scatter plot of a large set of speech samples 

plotted against their amplitudes. The-X axis 

represents one sample, the Y-axis represents the 

sample that immediately succeeds that sample.  

 

 
Figure 3 Relationship Between Successive Speech 

Samples 

 

 

 

From this plot we can see that there is a clear 

relationship between the two samples because 

the plot slants. This means that there is some 

redundancy in the signal that we can take 



advantage of and compress. Effectively, we can 

compress the speech sample directly by writing 

sample S[N+1] =S[N] and transmitting half the 

number of symbols.  

 

While two and three dimension relationships can 

be visibly observable, , as we get to higher and 

higher order models we struggle to imagine or 

understand the relationship between 8, 16 or 

even 32 samples. This does not mean that there 

is not a relationship between them. 

 

We can use the Linde-Buzzo-Gray LGB 

algorithm, also known as K-means clustering 

algorithm to simplify the process of generating 

reconstruction levels. Its goal is to reduce the 

distortion of the signal by reallocating bit 

locations to the most important parts of this 

signal.  

 

 

Linde-Buzo-Gray (K-Means Clustering) 

Algorithm: 

  

As described before, the goal of the LBG 

algorithm is to create a set of reconstruction 

levels that will better conform to the relationship 

between multiple dimensions, or in the case of 

speech, samples; secondly, by doing so we will 

reduce the distortion by placing more points 

along the trend line between the dimensions 

instead of wasting them in dead space. Thirdly, 

by representing multiple dimensions by a single 

index we can effectively compress the data by 

increasing the number of successive samples 

represented in the vector quantizer. 

 

The LBG algorithm stems from pattern 

recognition, i.e., it is a learning algorithm. It 

updates the reconstruction levels based on how 

the old one performs, i.e., learning how the data 

is shaped and select a point closer to the center 

of the clusters. 

 

The algorithm for the discrete case is given from 

[2] as:  

 

1) Define an initial set of reconstruction 

levels  

2) For each training vector compute the 

Euclidean distance between it and every 

reconstruction level.  

3) Define a group for each 

reconstruction level that consists of the 

training vectors with the smallest 

Euclidean distance.  

4) Calculate the mean squared error 

associated with each reconstruction 

level currently being used.  
5) If the change in MSE or the MSE has 

met the desired condition Stop 

otherwise:  

6) Find the centroid, i.e., the mean, of 

the set of vectors in each group of 

training vectors.  

7) Define the centroid as the new 

reconstruction levels  

8) If a reconstruction level does not have 

any training vectors associated with it, 

move it to the reconstruction level with 

the most number of elements in the cell 

and add a small perturbation.  

9) Go to step 2 until the desired number 

of iterations have been complete  

 

While the LBG will reduce the distortion in the 

system it is not guaranteed to converge to the 

optimal solution. Each set of initial conditions 

will result in a different solution. 

 

One way to come up with reasonable 

reconstruction levels is to visually inspect the 

training data (if possible) and select points that 

lie in the center of clusters or along the trend 

line of the data. Another method is to use 

random vectors from the training data and uses 

those as the initial conditions.  

 

The original paper on the LBG algorithm, 

mentioned by [2], anticipated using the splitting 

technique. A single element code book is used 

which is at the centroid of the entire training set. 

The single point is then split into two points, 

slight perturbation, and the LBG algorithm is 

applied. The two points are split into four points 

and the LBG algorithm is applied again. This 

process is repeated until the desired number of 

points is obtained. 



 

Encoding/Decoding VQ: 

 Because we are no longer quantizing two 

independent events, a different method for 

encoding the data is used. First each 

reconstruction value is assigned an index. 

Secondly, the Euclidean distance between the 

input sample and all the reconstruction levels are 

calculated. Thirdly, the reconstruction level with 

the smallest Euclidean distance is selected as the 

assigned reconstruction level. Lastly, the 

encoded data is the assigned reconstruction 

level’s index so that the data stream is simple the 

reconstruction level indexes. 

 

Decoding the signal is a much easier task than 

encoding. The index is matched in the index in 

the codebook. Once the index is found, the 

values in the codebook are assigned as the 

reconstruction level.  

 

The computation complexity of the encoding 

process is much more than then the complexity 

of the decoding processes. The number of 

compares needed for the encoding process is 

O(NK) where as the decoding processes can be 

simplified to as much as Q( log2(N)), or O(1) 

when using hash tables, where N is the number 

of samples being processes and K is the number 

of reconstruction levels.  

 

Results:  

Five speech files were used to generate the 

reconstruction levels. They consist of a woman 

saying “Hello sailor,” a speech by Pres. John F. 

Kennedy, a male German speaker, an English 

female speaker and a segment of Pres. George 

W. Bush talking.  The LBG algorithm was 

initialized by selecting random vectors from the 

concatenated speech file, but not from the 

training vectors. The algorithm completed one 

hundred iterations before being complete.  

 

A test file was used that was not included in the 

initial training vector files. It is a different 

snippet of Pres. George W. Bush talking.  The 

test file was encoded then decoded by a second 

algorithm that relied on the reconstruction levels 

of the LBG algorithm. The mean squared error 

was calculated for various bit rates and can be 

seen in Figure 4. 

 

 

 
Figure 4 Rate Distortion Curve for Vector 

Quantizer 

 

Each plot represents a different number of 

samples used per each vector. As the dimension 

of the vector increases we can see that both the 

distortion and the number of bits per a sample 

decrease dramatically. The curves are plotted 

with power of 2 increasing number of 

reconstruction levels and vector representations. 

The number of points represented on the higher 

order curves was limited by the computational 

time required to obtain those operating points. 

(Processing time would have taken several hours 

for a single point.) 

 

We can immediately see the advantage of using 

higher order vector quantizer. As the number of 

successive samples is increased, higher 

dimensionality, the bit rate is lowered. As for the 

distortion, if we pick a point on the lowest curve 

and move to the right, we can see that in order to 

obtain the same distortion criteria in a lower 

dimensional vector quantizer we need drastically 

more bits per sample. For example, look at the 

curve for 32 bits/vector at 0.21 bits/sample, and 

then compare it to the curve for 2 samples/vector 

at the same distortion. The latter rate-distortion 

is requires nearly five times as many bits per a 

sample, in this case 1 bit/sample, than the former 

case. 

 

The trend seen in Figure 4 indicates that as we 

increase the number of samples per a vector, but 

leave the rate constant, the distortion of the 

signal decreases; this trend does not continue 

indefinitely. Eventually the performance of the 



quantizer approaches an asymptotical barrier 

that prevents any significant improvement in the 

rate distortion curve. An example of this can be 

seen in Figure 5. 

 

 
Figure 5 SNR for fixed bitrates and increasing 

dimension of vector quantizer.[1] 

 

While unrelated to Rate-Distortion Curves, there 

is another beneficial feature to high dimensional 

vectors. For a fixed file size, increasing the 

dimension reduces the computation time 

required to process the same fixed length file. If 

a file is M-points before encoding, and the 

encoding vector is L dimension, we would 

require N = M/L number of points to encode the 

data. This ultimately leads to MK/L number of 

compares to encode the data. So as the 

dimension of the data is increased, the time 

required to encode the file is decreased. 

 

Conclusion: We have explored vector 

quantization and shown that it is very useful for 

compressing multiple points of data that show a 

strong correlation between them. Vector 

quantizers produce better rate distortion curves 

and immense compression ratio until we reach 

the asymptotic limit. Overall, vector 

quantization is an effective means of lossy 

compression 
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