
Speech Compression Using Vector

Quantization: The LBG Algorithm

Adam Hess

Binghamton University

EECE 523 Data Compression

 Abstract - The purpose of this paper is to give

an in-depth description of vector quantization

applied to speech signals. We will explore the

famed LBG algorithm to numerically calculate

appropriate reconstruction levels for the vector

quantizer and show why vector quantization is

an excellent form of compression for highly

correlated signals like speech.

 Introduction:

While the size of hard drives are on a constant

rise, they are never large enough to satiate our

thirst for storage. Our desire for high quality

images, videos and sounds stored on our

computers or transferred over the web is met

with limited bandwidth and hard drive space.

Ideally, we would like to be able to make the

data stream as small as possible. Data

compression attempts to solve this problem

either through lossy or lossless compression.

Lossless compression schemes attempt to take

advantage of the statistical properties of a signal.

Their goal is to make values that occur

frequently be represented by as few a number of

bits as possible and less frequent values take up

more bits. The end result is the average number

of bits of the data stream is smaller; therefore,

we have effectively compressed the data.

The downside of lossless compression schemes,

such as Huffman and Arithmetic coding, is that

they are relatively poor at compressing data.

They have a compression ratio that ranges from

1.16 to 2.03 [1] which varies largely depending

on the type of signal being used, i.e., text, audio,

video.

Lossy compression, on the other hand, attempts

to eliminate “redundancies” in the data by

simply discarding them. A lossy compression

scheme cannot perfectly reconstruct the original

signal, but its goal is to create an approximation

of the original signal. This is often based on

human auditory or visual perception. Our eyes

and ears are insensitive to noticing the errors

that this approximation creates.

The fundamental element in a lossy compression

scheme is quantization. Analog signals span an

infinite range space; therefore, all values cannot

be represented by a finite number of bits. A

quantizer takes this infinite range and fixes it

into quantized intervals that are multiples of a

step size. If we use a step size of 1 unit, values

that fall in between these units will get fixed to

the closest step level. For example, 0.4 will get

quantized to 0 and 3.8 will get quantized to 4.

The image below is a representation of a mid-

tread quantizer. X-axis is the range of input

values that get mapped to a fixed Y value.

Figure 1 Mid-tread quantizer

A simple way to compress the data is to reduce

the number of bits used to quantize the input

signal; this can be done two ways, each having

similar effects. The first would be to simply

increase the step size of the scalar quantizer so

that it is less sensitive to variation in the signal.

This reduces the number of levels needed to

represent the data. The second way is to remove

the Least Significant Bit (LSB) of each of the

quantized samples; fewer bits are needed to

represent the data. Chopping off an LSB is

effectively increasing the step size of the data by

a factor of two.

Vector Quantization:

 Consider the case where we are try to quantize

two different, mutually exclusive, events such as

the number of cars manufactured and the

temperature of your car driving on a breezy day.

Two, completely independent events and each

would require their own vector quantizer.

 The total number of levels required for this

would be the number of levels to quantize the

number of cars manufactured and one to

quantize the temperature in your car. So if we

used 8 bits for each quantizer we would need 16

bits to represent both pieces of data.

Let’s consider the alternate case: What if we are

trying to compress two highly dependent

features, such as the temperature of a bar of

metal and its length. There is an obvious

relationship between the length of the bar and

the temperature. As the temperature rises, the

bar gets linearly longer, as can be seen in Figure

2.

If we assumed that the length and temperature of

the metal are independent from one another and

use two quantizers to represent each, we can see

that we would be wasting a significant portion of

the values that we can represent. An ideal

quantizer would quantize only along the line that

represents the temperature-length relationship.

Vector quantizers take the temperature and

length values and represent them as a single

vector. By using fewer levels and bits represent

the data we can effectively compress this two

dimensional problem into one dimension.

Figure 2 Temperature vs. Length of a metal bar

VQ and Speech:

 Sucessive speech samples are like the

relationship between Temperature and Length,

they are highly correlated. Figure 3 shows a

scatter plot of a large set of speech samples

plotted against their amplitudes. The-X axis

represents one sample, the Y-axis represents the

sample that immediately succeeds that sample.

Figure 3 Relationship Between Successive Speech

Samples

From this plot we can see that there is a clear

relationship between the two samples because

the plot slants. This means that there is some

redundancy in the signal that we can take

advantage of and compress. Effectively, we can

compress the speech sample directly by writing

sample S[N+1] =S[N] and transmitting half the

number of symbols.

While two and three dimension relationships can

be visibly observable, , as we get to higher and

higher order models we struggle to imagine or

understand the relationship between 8, 16 or

even 32 samples. This does not mean that there

is not a relationship between them.

We can use the Linde-Buzzo-Gray LGB

algorithm, also known as K-means clustering

algorithm to simplify the process of generating

reconstruction levels. Its goal is to reduce the

distortion of the signal by reallocating bit

locations to the most important parts of this

signal.

Linde-Buzo-Gray (K-Means Clustering)

Algorithm:

As described before, the goal of the LBG

algorithm is to create a set of reconstruction

levels that will better conform to the relationship

between multiple dimensions, or in the case of

speech, samples; secondly, by doing so we will

reduce the distortion by placing more points

along the trend line between the dimensions

instead of wasting them in dead space. Thirdly,

by representing multiple dimensions by a single

index we can effectively compress the data by

increasing the number of successive samples

represented in the vector quantizer.

The LBG algorithm stems from pattern

recognition, i.e., it is a learning algorithm. It

updates the reconstruction levels based on how

the old one performs, i.e., learning how the data

is shaped and select a point closer to the center

of the clusters.

The algorithm for the discrete case is given from

[2] as:

1) Define an initial set of reconstruction

levels

2) For each training vector compute the

Euclidean distance between it and every

reconstruction level.

3) Define a group for each

reconstruction level that consists of the

training vectors with the smallest

Euclidean distance.

4) Calculate the mean squared error

associated with each reconstruction

level currently being used.
5) If the change in MSE or the MSE has

met the desired condition Stop

otherwise:

6) Find the centroid, i.e., the mean, of

the set of vectors in each group of

training vectors.

7) Define the centroid as the new

reconstruction levels

8) If a reconstruction level does not have

any training vectors associated with it,

move it to the reconstruction level with

the most number of elements in the cell

and add a small perturbation.

9) Go to step 2 until the desired number

of iterations have been complete

While the LBG will reduce the distortion in the

system it is not guaranteed to converge to the

optimal solution. Each set of initial conditions

will result in a different solution.

One way to come up with reasonable

reconstruction levels is to visually inspect the

training data (if possible) and select points that

lie in the center of clusters or along the trend

line of the data. Another method is to use

random vectors from the training data and uses

those as the initial conditions.

The original paper on the LBG algorithm,

mentioned by [2], anticipated using the splitting

technique. A single element code book is used

which is at the centroid of the entire training set.

The single point is then split into two points,

slight perturbation, and the LBG algorithm is

applied. The two points are split into four points

and the LBG algorithm is applied again. This

process is repeated until the desired number of

points is obtained.

Encoding/Decoding VQ:

 Because we are no longer quantizing two

independent events, a different method for

encoding the data is used. First each

reconstruction value is assigned an index.

Secondly, the Euclidean distance between the

input sample and all the reconstruction levels are

calculated. Thirdly, the reconstruction level with

the smallest Euclidean distance is selected as the

assigned reconstruction level. Lastly, the

encoded data is the assigned reconstruction

level’s index so that the data stream is simple the

reconstruction level indexes.

Decoding the signal is a much easier task than

encoding. The index is matched in the index in

the codebook. Once the index is found, the

values in the codebook are assigned as the

reconstruction level.

The computation complexity of the encoding

process is much more than then the complexity

of the decoding processes. The number of

compares needed for the encoding process is

O(NK) where as the decoding processes can be

simplified to as much as Q(log2(N)), or O(1)

when using hash tables, where N is the number

of samples being processes and K is the number

of reconstruction levels.

Results:

Five speech files were used to generate the

reconstruction levels. They consist of a woman

saying “Hello sailor,” a speech by Pres. John F.

Kennedy, a male German speaker, an English

female speaker and a segment of Pres. George

W. Bush talking. The LBG algorithm was

initialized by selecting random vectors from the

concatenated speech file, but not from the

training vectors. The algorithm completed one

hundred iterations before being complete.

A test file was used that was not included in the

initial training vector files. It is a different

snippet of Pres. George W. Bush talking. The

test file was encoded then decoded by a second

algorithm that relied on the reconstruction levels

of the LBG algorithm. The mean squared error

was calculated for various bit rates and can be

seen in Figure 4.

Figure 4 Rate Distortion Curve for Vector

Quantizer

Each plot represents a different number of

samples used per each vector. As the dimension

of the vector increases we can see that both the

distortion and the number of bits per a sample

decrease dramatically. The curves are plotted

with power of 2 increasing number of

reconstruction levels and vector representations.

The number of points represented on the higher

order curves was limited by the computational

time required to obtain those operating points.

(Processing time would have taken several hours

for a single point.)

We can immediately see the advantage of using

higher order vector quantizer. As the number of

successive samples is increased, higher

dimensionality, the bit rate is lowered. As for the

distortion, if we pick a point on the lowest curve

and move to the right, we can see that in order to

obtain the same distortion criteria in a lower

dimensional vector quantizer we need drastically

more bits per sample. For example, look at the

curve for 32 bits/vector at 0.21 bits/sample, and

then compare it to the curve for 2 samples/vector

at the same distortion. The latter rate-distortion

is requires nearly five times as many bits per a

sample, in this case 1 bit/sample, than the former

case.

The trend seen in Figure 4 indicates that as we

increase the number of samples per a vector, but

leave the rate constant, the distortion of the

signal decreases; this trend does not continue

indefinitely. Eventually the performance of the

quantizer approaches an asymptotical barrier

that prevents any significant improvement in the

rate distortion curve. An example of this can be

seen in Figure 5.

Figure 5 SNR for fixed bitrates and increasing

dimension of vector quantizer.[1]

While unrelated to Rate-Distortion Curves, there

is another beneficial feature to high dimensional

vectors. For a fixed file size, increasing the

dimension reduces the computation time

required to process the same fixed length file. If

a file is M-points before encoding, and the

encoding vector is L dimension, we would

require N = M/L number of points to encode the

data. This ultimately leads to MK/L number of

compares to encode the data. So as the

dimension of the data is increased, the time

required to encode the file is decreased.

Conclusion: We have explored vector

quantization and shown that it is very useful for

compressing multiple points of data that show a

strong correlation between them. Vector

quantizers produce better rate distortion curves

and immense compression ratio until we reach

the asymptotic limit. Overall, vector

quantization is an effective means of lossy

compression

References:

[1] M. Fowler EECE 523. Class Lecture, Topic:

“Ch. 3 Huffman Coding.” SUNY Binghamton,

Binghamton, NY. Spring 2011.

[2] Kahlid Sayood. “Vector Quantizer” in

Introduction to Data Compression, Third

Edition. New York: Morgan Kaufmann, 2006,

pg 273-324

